The Quasi-Biennial Vertical Oscillations at Global GPS Stations: Identification by Ensemble Empirical Mode Decomposition

نویسندگان

  • Yuanjin Pan
  • Wenbin Shen
  • Hao Ding
  • Cheinway Hwang
  • Jin Li
  • Tengxu Zhang
چکیده

Modeling nonlinear vertical components of a GPS time series is critical to separating sources contributing to mass displacements. Improved vertical precision in GPS positioning at stations for velocity fields is key to resolving the mechanism of certain geophysical phenomena. In this paper, we use ensemble empirical mode decomposition (EEMD) to analyze the daily GPS time series at 89 continuous GPS stations, spanning from 2002 to 2013. EEMD decomposes a GPS time series into different intrinsic mode functions (IMFs), which are used to identify different kinds of signals and secular terms. Our study suggests that the GPS records contain not only the well-known signals (such as semi-annual and annual signals) but also the seldom-noted quasi-biennial oscillations (QBS). The quasi-biennial signals are explained by modeled loadings of atmosphere, non-tidal and hydrology that deform the surface around the GPS stations. In addition, the loadings derived from GRACE gravity changes are also consistent with the quasi-biennial deformations derived from the GPS observations. By removing the modeled components, the weighted root-mean-square (WRMS) variation of the GPS time series is reduced by 7.1% to 42.3%, and especially, after removing the seasonal and QBO signals, the average improvement percentages for seasonal and QBO signals are 25.6% and 7.5%, respectively, suggesting that it is significant to consider the QBS signals in the GPS records to improve the observed vertical deformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

Surface vertical deformation includes the Earth's elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS) stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs), in northeastern Tibet. The ...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

Integration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment

Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...

متن کامل

Analysis of the Nonlinear Trends and Non-Stationary Oscillations of Regional Precipitation in Xinjiang, Northwestern China, Using Ensemble Empirical Mode Decomposition.

Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960-2012, we investigated the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015